LAUTERBACH A

General Commands Reference
Guide G

Release 02.2023

General Commands Reference Guide G

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
(=T =T o TR0 1T 1P T T r~
General Commands Reference GUIide Gccccoiicemiiimminnnmnns s s s ssssmsnas 1
L 1= (o 4
L€ 110] Y 10 5
GLOBALON Global event-controlled PRACTICE script execution 5
T o 10
Go Debug control, program execution, and real-time emulation 10
Debug Control for Debuggers 10
Go.Asm Start the program execution and switch to Asm mode 11
Go.Back Go back in program (CTS) 13
Go.BackEntry Go back in program to function entry (CTS) 14
Go.BackTillWarning Go back in program until warning (CTS) 15
Go.Change Run program till content changes 15
Go.direct Start the program execution 16
Go.HiIl Start the program execution and switch to HLL mode 18
Go.Java Run program until JAVA code starts 19
Go.Mix Start the program execution and switch to 'Mix' mode 20
Go.MONitor Switch to run mode debugging 21
Go.Next Start program and stop at next line 21
Go.Return Complete HLL function 22
Go.Till Run program till expression becomes true 25
Go.TillWarning Re-run program until warning (CTS) 26
Go.Up Go up in function nesting 27

T 210 LU 28
GROUP Group functions, modules, or tasks 28
Features 28
GROUP.COLOR Define color for group indicator 32
GROUP.Create Create a new group 33
GROUP.CreateFunctions Pool functions to group 34
GROUP.CreateLabels Use labels to pool address ranges to group 35
GROUP.CreateModules Pool modules to group 37
GROUP.CreatePrograms Pool programs group 38
GROUP.CreateSources Pool source files to group 39
©1989-2023 Lauterbach General Commands Reference Guide G 2

GROUP.CreateTASK Pool tasks to group 40
GROUP.Delete Delete the specified group 43
GROUP.DeleteTASK Delete specified task from group 43
GROUP.DISable Disable a group 44
GROUP.ENable Enable a group 45
GROUP.HIDE Hide group from debugging 45
GROUP.List List all specified groups 46
GROUP.Merge Merge group members in statistic 46
GROUP.RESet Clear all group specifications 47
GROUP.SEParate Separate group members in statistic 47
GROUP.SHOW Show group for debugging 48
©1989-2023 Lauterbach General Commands Reference Guide G | 3

General Commands Reference Guide G

Version 10-Feb-2023

History

05-Jan-22 Support wildcard in GROUP.Create TASK.

©1989-2023 Lauterbach General Commands Reference Guide G | 4

GLOBALON

GLOBALON Global event-controlled PRACTICE script execution
[<events>] [<action>] [Example]
Format: GLOBALON <event> [<action>]
<event>: <device_specific_events>
<practice_specific_events>
<cpu_specific_events>
<device_ ABREAK
specific_ CORESWITCH
events>: GO
PBREAK
PBREAKAT <address>
POWERDOWN
POWERUP
RESET
SYSDOWN
SYSUP
TRIGGER
<action>: DO <file>

The GLOBALON command enables the automatic start or branching of the PRACTICE programs
controlled by several events. In order for events and their actions to be available, they need to be registered
in TRACE32. To register events and their actions, you can for example:

o Run the GLOBALON commands via the TRACE32 command line.

J Include the GLOBALON commands in the PRACTICE script file system-settings.cmm. As a
result, they are automatically registered when you start TRACES32. For more information, see
“Automatic Start-up Scripts” (practice_user.pdf).

J Include the GLOBALON commands in any other script. As a result, they are only registered
when you run that script.

Registered actions remain stored on the global PRACTICE stack frame. Therefore, the actions are valid for
the entire duration of the TRACE32 session, or until they are removed manually.

©1989-2023 Lauterbach

General Commands Reference Guide G | 5

The currently active actions can be viewed with the PMACRO command. The outermost frame is the global
PRACTICE stack frame, as shown below.

‘ Q4 B:PMACRO. list o -E =]

(:mEnddo || &7End || Z8Reset || &Lt || P{Edit || 21 Breakpoints |

o C:4t32%globalon_register_events_and_actions.cmm

N CMD FNHELP DO C:%T32%globalon_cmd_functionhelp.cmm
A N CMD T32ICONS DO C:\T32'demo'menu'internal_icons.cmm
N SYSDOWN DO C:%T32%globalon_sysdown.cmm
N SYSUP DO C:\T32%globalon_sysup.cmm

)

A Global PRACTICE stack frame with GLOBALON commands

Let's assume that an action has been registered for the SYSUP event. When a SYStem.Up command is
initiated via the TRACES32 PowerView GUI or the command line or via another PRACTICE script (*.cmm),
then TRACES2 responds as illustrated in the figure below:

éy B::5Y5tem.state

Maode
Down

‘ TRACES32 executes the # TRACE32 detects the TRACES32 executes the

‘ o SYStem.Up command. SYSUP event. <action>.

Events: <device_specific_events>

Device-specific Events Descriptions

ABREAK The analyzer mode changed to the break state.

CORESWITCH SMP debugging: The currently displayed context changed to a
different core or thread.

GO The target program started.

PBREAK The target program stopped.

PBREAKAT The target program stopped at a specific address.

POWERDOWN Target power is switched off.

POWERUP Target power is switched on.

RESET A target reset was detected.

SYSDOWN System mode changed to Down or NoDebug. The event is also

triggered if the debugger is in system mode StandBy and the target
power is switched off.

SYSUP System mode changed to Up. The event is also triggered if the
debugger is in system mode StandBy and the target power is
switched on.

TRIGGER A podbus trigger occurred (internal or external source can be

selected via TRIGGER window).

©1989-2023 Lauterbach General Commands Reference Guide G | 6

Events: <practice_specific_events>

<practice_specific_
events>

For a description of the PRACTICE specific events, such as
GLOBALON ERROR, refer to GLOBALON (practice_ref.pdf).

Events: <cpu_specific_events>

<cpu_specific_
events>

For information about CPU specific events, refer to the Processor
Architecture Manuals [4] listed in the See also block below.

<actions>

One of the following actions can be defined for any of the above events:

Actions Descriptions

no action An already defined action for a particular global event will be removed

specified from the global PRACTICE stack frame. See “Unregistering GLOBALON
Commands”.

DO If the event occurs, the specified PRACTICE script file will be executed
automatically.

©1989-2023 Lauterbach

General Commands Reference Guide G |

7

Example - Creating Actions for GLOBALON Events

1. Develop the action (PRACTICE script *.cmm) you want to be executed automatically whenever
the desired event occurs.

For demo purposes, we will use two simple scripts for the events SYSUP and SYSDOWN so that you
can reproduce the example right away.

globalon_sysup.cmm

PRINT "System up at " Clock.Time ()
AREA ; Display the message in the AREA window

; Other commands such as Data.Set, PER.Set to disable an
; external watchdog

12

ENDDO

globalon_sysdown.cmm

PRINT "System down at " Clock.Time ()
AREA ; Display the message in the AREA window

7 o e

ENDDO

2. Register the events and their actions in TRACE32.

; At the global PRACTICE stack frame, the following
; device-specific events are registered: SYSUP and SYSDOWN
; On SYSUP, this PRACTICE script file (*.cmm) is called:
GLOBALON SYSUP DO "~~/globalon_sysup.cmm"

; On SYSDOWN, this PRACTICE script file (*.cmm) is called:

GLOBALON SYSDOWN DO "~~/globalon_sysdown.cmm

The path prefix ~~/ works on Windows and Linux and expands to the system directory of TRACE32, by
default C: /T32 for Windows.

©1989-2023 Lauterbach General Commands Reference Guide G | 8

Unregistering GLOBALON Commands

You can unregister all GLOBALON commands or just a selected GLOBALON command.

NOTE: Unregistering all GLOBALON commands from the global PRACTICE stack
frame also deletes all global PRACTICE macros.

J To unregister all GLOBALON commands, type at the TRACE32 command line:

END ; Ends all active PRACTICE scripts
PMACRO.RESet ; Unregisters all GLOBALON commands and
; deletes all global PRACTICE macros

J To unregister just a selected GLOBALON command, type at the TRACE32 command line:

END ; Ends all active PRACTICE scripts

; Unregisters the action for the SYSDOWN event
GLOBALON SYSDOWN ; Do not include the DO <action> here!

Result: The respective line or lines are no longer displayed in global PRACTICE stack frame of the
PMACRO.list window. Thus the GLOBALON command or commands can no longer be executed.

See also

H ON W END B PMACRO.RESet

A ’Mico32 specific Event for the ON and GLOBALON Command’ in ’Mico32 Debugger’
A 'CPU specific Events for the ON and GLOBALON Command’ in ’Intel® x86/x64 Debugger’

©1989-2023 Lauterbach General Commands Reference Guide G

9

Go

Go Debug control, program execution, and real-time emulation
See also
B Go.Asm B Go.Back B Go.BackEntry B Go.BackTillWarning
B Go.Change B Go.direct B Go.HIl B Go.Java
B Go.Mix B Go.MONitor B Go.Next B Go.Return
W Go.Till B Go.TillWarning B Go.Up B Break
B List B Step

A ’Release Information’ in’Legacy Release History’

Debug Control for Debuggers

The command Go starts the program execution on the chip/core. By default the program is executed in real-
time, but there are features within TRACES2 that suspend the real-time execution. Examples are:

J Intrusive breakpoint

J Performance analysis via StopAndGo

Go command in the toolbar

A TRACE32 PowerView
File Edit View Var eak Run CPU Misc Trace Perf Cov Window Help

(M dee/pn[E e aollsumdacds @ 22|
| | 6o}

NOTE: Go is not equivalent to the SYStem.Mode Go command.

SYStem.Mode Go resets the processor/chip, enables the on-chip debug logic,
and then starts the program execution.

Restarting from Breakpoint

When interrupts are pending and the program execution is started from a breakpoint, it is possible that the
processor/core executes the interrupt service routine and returns to the same breakpoint location afterward.
The debugging seems to stick on the breakpoints.

To avoid this behavior, TRACES32 executes a single step when the program execution is started on a
breakpoint if required. However, this strategy does not solve the problem completely. To completely solve the
issue, you have to disable the interrupts will single stepping on assembler level with the TRACE32 command
SYStem.Option.IMASKASM ON.

SYStem.Option.IMASKASM ON is not a default setting, because it may disturb debugging parts of the
program (e.g. a boot loader) that enable/disable interrupts.

©1989-2023 Lauterbach General Commands Reference Guide G | 10

Go.Asm

Start the program execution and switch to Asm mode

Format:

<breaktype>:

Go.Asm [<address> [[<breaktype> ...]] ...

Program | ReadWrite | Read | Write
Onchip | HARD | SOFT
ProgramPass | ProgramFail

MemoryReadWrite | MemoryRead | MemoryWrite
RegisterReadWrite | RegisterRead | RegisterWrite
VarReadWrite | VarRead | VarWrite

DATA[.Byte | .Word | .Long] <value> ...

Alpha | Beta | Charly | Delta | Echo

WATCH | BusTrigger | BusCount
TraceEnable | TraceData | TraceON | TraceOFF | TraceTrigger

Spot

DISable | NoMark | EXclude

TASK <task_magic> | <task_id> | <task_name>

MACHINE <machine_magic> | <machine_id>| <machine_name>
CORE <number>

COUNT <value>

CONDition <expression> [[AfterStep]

VarCONDition <hll_expression> [/AfterStep]

CMD <command_string>

RESUME

SingleCORE (SMP debugging only)

Starts the program execution and switches the debug mode to Asm mode.

<breaktype>

For a description of the breakpoint types and breakpoint options, see

Break.Set.

©1989-2023 Lauterbach

General Commands Reference Guide G

11

If one or more addresses are specified, temporary breakpoints are set before the program execution is

started.

Go.Asm

Break

Go.Asm d_add

Go.Asm D:0x40004128 /Write

See also

switch to debug mode assembler and
start the program execution
stop the program execution

set a temporary Program breakpoint to
the label d_add, switch to debug mode
assembler and start the program
execution

set a temporary Write breakpoint to
the address D:0x40004128, switch to
debug mode assembler and start the
program execution

H Go B Go.direct

©1989-2023 Lauterbach

General Commands Reference Guide G | 12

Go.Back

Go back in program (CTS)

Format:

<breaktype>:

Go.Back [<address> [[<breaktype>...]] ...

Program | ReadWrite | Read | Write
Onchip | HARD | SOFT
ProgramPass | ProgramFail

MemoryReadWrite | MemoryRead | MemoryWrite
RegisterReadWrite | RegisterRead | RegisterWrite
VarReadWrite | VarRead | VarWrite

DATA[.Byte | .Word | .Long] <value> ...

Alpha | Beta | Charly | Delta | Echo

WATCH | BusTrigger | BusCount
TraceEnable | TraceData | TraceON | TraceOFF | TraceTrigger

Spot

DISable | NoMark | EXclude

TASK <task_magic> | <task_id> | <task_name>

MACHINE <machine_magic> | <machine_id>| <machine_name>
CORE <number>

COUNT <value>

CONDition <expression> [[AfterStep]

VarCONDition <hll_expression> [/AfterStep]

CMD <command_string>

RESUME

Re-runs the recorded trace information backward until the specified point (only for trace-based debugging -

CTS).

<breaktype>

For a description of the breakpoint types and breakpoint options, see

Break.Set.

©1989-2023 Lauterbach

General Commands Reference Guide G

13

Example:

Trace.List ; open a Trace Listing

CTS.GOTO -22918643. ; specify record -22918643. as CTS
; starting point

Go.Back funcl3 ; re-run the recorded trace information
; backward until the entry to funcl3

See also
B Go B Go.direct B CTS

A ’Release Information’ in’Legacy Release History’

Go.BackEntry Go back in program to function entry (CTS)

Format: Go.BackEntry /Endless

Re-runs the recorded trace information backward until the entry of the current function (only for trace-based
debugging - CTS).

Example:
Trace.List ; open a Trace Listing
CTS.GOTO -22918643. ; specify record -22918643. as CTS
; starting point
Go.BackEntry ; re-run the recorded trace information
; backward until the entry of the current
; function
See also
B Go B Go.direct

A ’Release Information’ in’Legacy Release History’

©1989-2023 Lauterbach General Commands Reference Guide G | 14

Go.BackTillWarning

Go back in program until warning (CTS)

Format: Go.BackTillWarning

Re-runs the recorded trace information backward until the previous warning (only for trace-based debugging
- CTS). An explanation for the warning is given in the message area. A full example is given at

Go.TillWarning.
See also
H Go W Go.direct B CTS.state
Go.Change Run program till content changes
Format: Go.Change <content>

Starts the program execution. Whenever a breakpoint is hit, check if <content> changed. If <content> has
not changed, re-start program execution automatically.

Example:

Break.Set 0x100 7
Break.Set 0x200 7
Go.Change Register (R31) 5

See also

set a Program breakpoint at address 0x100
set a Program breakpoint at address 0x200
starts the program execution

check at each breakpoint hit if the
content of register R31 changed

if not, re-start the program execution
automatically

B Go B Go.direct

©1989-2023 Lauterbach

General Commands Reference Guide G |

15

Go.direct

Start the program execution

[Examples]

Format:

<breaktype>:

Go.direct [<address> [/<breaktype> ...]] ...

Program | ReadWrite | Read | Write
Onchip | HARD | SOFT
ProgramPass | ProgramFail

MemoryReadWrite | MemoryRead | MemoryWrite
RegisterReadWrite | RegisterRead | RegisterWrite
VarReadWrite | VarRead | VarWrite

DATA[.Byte | .Word | .Long] <value> ...

Alpha | Beta | Charly | Delta | Echo

WATCH | BusTrigger | BusCount
TraceEnable | TraceData | TraceON | TraceOFF | TraceTrigger

Spot

DISable | NoMark | EXclude

TASK <task_magic> | <task_id> | <task_name>

MACHINE <machine_magic> | <machine_id>| <machine_name>
CORE <number>

COUNT <value>

CONDition <expression> [/AfterStep]

VarCONDition <hll_expression> [[AfterStep]

CMD <command_string>

RESUME

SingleCORE (SMP debugging only)

Starts the program execution. If one or more addresses are specified temporary breakpoints are set, before
the program execution is started.

<breaktype> For a description of the breakpoint types and breakpoint options, see
Break.Set.

SingleCORE SMP debugging only:
Start program execution only on the currently selected core.

©1989-2023 Lauterbach

General Commands Reference Guide G

16

Examples:

Go

Go funcO funcl2

CORE.select 1.

Go /SingleCORE

; sStart program execution

; set temporary breakpoints to the entry of

; function funcO and funcl2 and then start the

; program execution

; temporary breakpoints are only valid until the
; program execution stops the next time

; select core 1

; start program execution on

; core 1.

only

The Cores field of the TRACES2 state line displays the number of the currently selected core.

See also

H Go B Go.Asm B Go.Back B Go.BackEntry
B Go.BackTillWarning B Go.Change W Go.HIl B Go.Java

B Go.Mix B Go.MONitor B Go.Next B Go.Return

W Go.Till B Go.TillWarning B Go.Up B Break.direct
B Register.view 1 Register() 1 STATE.RUN()

A ’Release Information’ in’Legacy Release History’

©1989-2023 Lauterbach

General Commands Reference Guide G | 17

Go.HlIl Start the program execution and switch to HLL mode

Format: Go.HIl [<address> [[<breaktype> ..]] ...

<breaktype>: Program | ReadWrite | Read | Write
Onchip | HARD | SOFT
ProgramPass | ProgramFail

MemoryReadWrite | MemoryRead | MemoryWrite
RegisterReadWrite | RegisterRead | RegisterWrite
VarReadWrite | VarRead | VarWrite

DATA[.Byte | .Word | .Long] <value> ...

Alpha | Beta | Charly | Delta | Echo

WATCH | BusTrigger | BusCount
TraceEnable | TraceData | TraceON | TraceOFF | TraceTrigger

Spot

DISable | NoMark | EXclude

TASK <task_magic> | <task_id> | <task_name>

MACHINE <machine_magic> | <machine_id>| <machine_name>
CORE <number>

COUNT <value>

CONDition <expression> [[AfterStep]

VarCONDition <hll_expression> [/AfterStep]

CMD <command_string>

RESUME

SingleCORE (SMP debugging only)

Starts the program execution and switches the debug mode to HLL mode. If one or more addresses are
specified, temporary breakpoints are set before the program execution is started.

<breaktype> For a description of the breakpoint types and breakpoint options, see
Break.Set.
See also
H Go B Go.direct

©1989-2023 Lauterbach General Commands Reference Guide G | 18

Go.Java Run program until JAVA code starts

Format: Go.Java

Starts the program execution and stops at the first JAVA byte code to be executed. This command can be
used to switch from native debugging to JAVA byte code debugging.

See also
H Go B Go.direct

©1989-2023 Lauterbach General Commands Reference Guide G | 19

Go.Mix Start the program execution and switch to "Mix" mode

Format: Go.Mix [<address> [I<breaktype> ...]] ...

<breaktype>: Program | ReadWrite | Read | Write
Onchip | HARD | SOFT
ProgramPass | ProgramFail

MemoryReadWrite | MemoryRead | MemoryWrite
RegisterReadWrite | RegisterRead | RegisterWrite
VarReadWrite | VarRead | VarWrite

DATA[.Byte | .Word | .Long] <value> ...

Alpha | Beta | Charly | Delta | Echo

WATCH | BusTrigger | BusCount
TraceEnable | TraceData | TraceON | TraceOFF | TraceTrigger

Spot

DISable | NoMark | EXclude

TASK <task_magic> | <task_id> | <task_name>

MACHINE <machine_magic> | <machine_id>| <machine_name>
CORE <number>

COUNT <value>

CONDition <expression> [[AfterStep]

VarCONDition <hll_expression> [/AfterStep]

CMD <command_string>

RESUME

SingleCORE (SMP debugging only)

Starts the program execution and switches the debug mode to Mix mode. If one or more addresses are
specified temporary breakpoints are set, before the program execution is started.

<breaktype> For a description of the breakpoint types and breakpoint options, see
Break.Set.
See also
H Go B Go.direct

©1989-2023 Lauterbach General Commands Reference Guide G | 20

Go.MON:itor Switch to run mode debugging

Format: Go.MONitor

Starts the program execution and switches to run mode debugging. In run mode debugging all debug events
are handled by a so-called debug monitor.

Please be aware that run-mode debugging has to be configured, before it can be used. Typical commands

are:
SYStem.PORT 10.1.2.99:2345 ; configure the TCP/IP
; communication to the debug
; monitor
Go .MONitor
SYStem.MemAccess GdbMON ; use Debug Communication Channel

; (DCC) to communicate with GDB
Go .MONitor

The command Break.MONitor can be used to switch back to stop mode debugging if this is possible within
your debug environment.

See also
H Go M Go.direct B Break.MONitor M Break.SetMONitor
Go.Next Start program and stop at next line
Format: Go.Next

Start the program execution and set a temporary breakpoint set to the next assembler or HLL line. This
command can be used to leave a loop or to overstep a subroutine call instruction (see also the command
Step.Over.)

See also
B Go B Go.direct

©1989-2023 Lauterbach General Commands Reference Guide G | 21

Go.Return

Complete HLL function

Format: Go.Return

The first Go.Return stops at the function epilog, the second Go.Return stops at the return of the function.
Stopping at the function epilog first has the advantage that the local variables are still valid at this point.

This works in detail as follows:

The debug information for a function includes the epilog and exit information (command sYmbol.INFO);

epilog shows the start address of the function epilog, exit shows the address of the return of the function.

% BusYmbolINFO get_dht

(=[O el

[2 symbols || #tipump || st || Quview || $&mmu |

laddress info

attr: FLE

function

wJpeghJdmarkertget_dht

P:0000EE74--0000F243

function info

modul-Tocal static

= s1ze: 0. push: [] use:

[RO,R1,R2,R3,R4,R5,R6,R7,RE,R9,R10,R11,R1Z]

epilog: P:0000F230
exit: P :0000F240
#pdu]e info

anguage: ELF-C

pro : Diab Data, Inc:dcc Rel 5.8.0.0-3_wind00210029:PPCE200Z4N
sour D:\work'rweiss'demo'\mpcS5xxx'\mpc5646c_jpeghjdmarker. c
type

(int) (function returns int)

(int) (signed 32 bits)

4

©1989-2023 Lauterbach

General Commands Reference Guide G

22

Go get_dht ; set a temporary breakpoint to the function
; get_dht and start the program execution
; —-> the program execution is stopped at the
; function entry

Step.single ; step inside function
Step.single
Go.Return ; set a temporary breakpoint to the start address

; of the function epilog and start the program
; execution

; —-> the program execution is stopped at the

; function epilog, here all local variables are
; still valid

- ot e
[Mstep || over |[AdDiverge|[¢/ Return|[@up |[Pco |[1 Break |[¥Mode]@ Find:
addr/1ine |code label mnemonic comment i
SF:0000F22C §\CUUUUI 1 r3,0x1 o
486

BAC10148 T r22,0x148(rl) ; r22,328(rl)

80010174 Twz r0,0x174(r1) E|
7C0803A6 mt1r r0 |
38210170 addi ri,rl,0x170

4E800020 blr

:0000F234
SF:0000F238
SF:0000F23C
SF:0000F240

_____________ ﬁ B::Frame /Locals /Caller EI@
4|
Down [Vlargs [VlLocals [V]caller Task:
-000][get_dht { o~
® [R31] C'II"I'FO = 0x40001780)
= [R3] return =1
- [R30] Tength = 0
#® [SD:0x4003FD80] bits = (0, 0, 3,1, 1,1,1,1,1,1,1,1,0,0,0,0,0)
® [SD:0x4003FD%4] huffval = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 19, 81, 97, 7, 34
. [R29] 4 = 12 |
- [R28] index =1 3
- [R27] count =12 |
® [R26] htblptr = 0x40001830
[R25] datasrc = 0x40001DBS
[R24] next_input_byte = 0x4000259A
- [R23] bytes_in_buffer = 3670
I ;
Go.Return ; set a temporary breakpoint to the return of the

; function and start the program execution

; —-> the program execution is stopped at the
; function exit, since the function epilog

; already cleaned the frame pointer, local

; variables are no longer valid

©1989-2023 Lauterbach General Commands Reference Guide G | 23

R29]

SD:0x4003FEF0] bits =

= BaList = =R
[M Step][W Over][.A.Diverge][+ Return][¢ up][b Go][11 Break][1% Mode]@ Find:
addr/1ine |code label mnemonic comment i
486 |; -~
SF:0000F230 B Tmw r22,0x148(r1)
SF:0000F234 Twz r0,0x174(r1)
SF:0000F238 |0 mt1r ro 1
SF:0000F23C |3 addi rl,rl,0x170 ; ri,rl,3686 =
i blr
LOCAL (bod & B:Frame /Locals /Caller =0 |E5E
L 1 Down [“largs [VLocals V] caller Task:
-000]|get_dht { o~
® [R31] cinfo = 0x40001780)
= [R3] return =
- [R30] Tength = 1073749400

= 0x40001780
= 0x0
0x0

(64, 0, 29, 152, 64, 0, 23, 128, 64, 3, 255, 24, 0, 1, 20,
SD:0x4003FF04] huffval = (64, 0, 88, 192, 0, 0, 0, O, 64, 0, 23, 32, 0, 0, 0, O, [
i = 1073747744
index = 1073747748
count = 0

htblptr
datasrc =
next_input_byte
bytes_in_buffer

Go.Return 2

if the command Go.Return is used when the
the instruction pointer is already at the
return of the function, an error message is

; generated
[B:List] =0 =R
[M Step][W Over][.A.Diverge” + Return][¢ up][b Go][11 Break][| Mode]@
addr/1ine |code label mremonic comment i
5F:0000F22C |38600001 1 r3,0x1 -~
486 |+
SF:0000F230 [BACIO148 Tmw r22,0x148(r1)
SF:0000F234 (20010174 Twz r0,0x174(r1)
SF:0000F238 [7C0803A6 mt1r ro
:0000F23C gglldi rl,rl,0x170
. n oir i

componems][trace][Data][

Morn) (wnlist)

™

PERF || svstem || step

SF:0000F240 \\jpeg\jdmarker\get_dht+0x3CC

See also

B Go B Go.direct

A ’Release Information’ in’Legacy Release History’

©1989-2023 Lauterbach

General Commands Reference Guide G

24

Go.Till Run program till expression becomes true

Format: Go.Till <boolean_expression>

Starts the program execution. Whenever a breakpoint is hit, Go.Till checks if the <boolean_expression>
became true. If not, Go.Till re-starts the program execution automatically.

Example:
Break.Set 0x100 ; set a Program breakpoint at
; address 0x100
Break.Set 0x200 ; set a Program breakpoint at
; address 0x200
Go.Till Data.Byte(D:0x100)==0x0 ; start the program execution,
; check at each breakpoint hit if
; the content of the byte at
; address 0x100 is O
; 1f not, re-start the program
; execution automatically
See also
B Go B Go.direct

©1989-2023 Lauterbach General Commands Reference Guide G | 25

Go.TillWarning Re-run program until warning (CTS)

Format: Go.TillWarning

Re-runs the recorded program flow until the next warning (only for trace-based debugging - CTS).

An example for a warning is given in the message area.

AREA.view ; open message area
Trace.List ; open a Trace Listing
CTS.GOTO -17281536. ; specify record -17281536. as CTS

; starting point

CTS.state ; open the CTS state window and
; and check for warnings

Go.TillwWarning ; re-run the recorded program
; until the next warning

£|BzAREA e |l]

at -2573929: bus read Tong not as expected Oxc808bf2c (expected:0x00000000) -
4 1 [

See also
H Go M Go.direct B CTS.state

©1989-2023 Lauterbach General Commands Reference Guide G | 26

Go.Up

Go up in function nesting

Format:

Go.Up [<level> | <address>]

Starts the program execution in order to return to the caller function. A temporary breakpoints is set directly
behind the function call in the caller function.

Without arguments it returns to the function that called the current function (level 1).

<level>

With a <level> argument it starts the program execution in order to return 3 levels up in the call hierarchy
(see also command Frame.view).

2, e

3)

Program Address

&< BiFrame =0 =R
Down [“largs [[Locals [C]caller
funcl3(a =6, c =7, e = 2) o~
-001||funcl3(a =6, c =7, e = 2)
=1, ¢ = =

[

= GoTill

<address>

a Breakpoint...

a Ereakpoints L4 %
jaa Display Memory v I

I Bookmark...

M Toggle Bookmark
+¥+ Set PC Here
Edit Source

2 View Info

With an <address> argument it returns to the first function on the call stack, which includes the given
address. The address can be defined symbolically, by the name of the function, or by a line number within

the function.

Go.Up

Go.Up 3.

Go.Up main

See also

; return to the caller of the current function

; return three levels up in the function nesting

; return to function main

B Go

B Go.direct

©1989-2023 Lauterbach

General Commands Reference Guide G | 27

GROUP

GROUP

Group functions, modules, or tasks

The GROUP command group allows to structure application programs consisting of a huge number of
functions/modules/tasks to ease the evaluation of the trace contents and the debugging process.

See also

B GROUP.COLOR

B GROUP.CreateModules
B GROUPDelete

B GROUPHIDE B GROUPList

B GROUP.SEParate B GROUP.SHOW

A 'GROUP Function’ in‘General Function Reference’

B GROUPCreate
B GROUP.CreatePrograms
B GROUPDeleteTASK

B GROUP.CreateFunctions
B GROUP.CreateSources
B GROUPDISable

B GROUPMerge

1 GROUPEXIST()

B GROUP.CreatelLabels
B GROUPCreateTASK
B GROUPENable
B GROUP.RESet

Features
ENable
17 B:GROUP.List ===
[3 Reset |[O Disable Al @ Enable All|[O Hide AlLL@® Show All| 52 store... || £ Load... |[ii Create...] jiiaerac. |
group enable|hide |merge |color i
= TINPUT" " AQUA -
YJdinput W AQUA
= "IPEG" " NAVY
| \E'lpeﬁ W NAVY
"other W -

TRACE32 PowerView provides the following features if a group is enabled:

The source code of all group members is marked with the color assigned to the group.

=Y BuList jpeg_t32_error

[E=N Eoh

[Mistep |[W over |IéDi\.rerge | ¢Retun || eup |

P Go || M Break || Pmode | Find:

ipeg.c

addr/1ine |code label mnemonic

comment |

Jpeg_t32_error (struct jpeg_error_mgr * err)

281
SF:00001540) |94 jpeg_t32..:stwu rl,-0x10(r1)
SF:00001544 mf1r ro o
SF:00001548 stw r31,0x0C(rl)

1

©1989-2023 Lauterbach

General Commands Reference Guide G | 28

. The trace information recorded for the group members is marked with the color assigned to the

group.
£ BrTrace List EI
(& setup... || 11 Goto... || #iFind... || Adchart ||_!Pr0ﬁ|e || BmPs || #More || Xiess
record |run |address cycle |data symbol ti.back i
andi. r3,r3,0xZ -
b1r i
+00000007 F:00001D84 ptrace “ipegjpegienable_cache+0x1C 4.560us
group "JPEG" 4.560us — *
1188 return 0;
£ i r3,0x0
1189 ki
Twz r0,0x14(r1)
mt1r rQ
}aﬁldi ril,rl,0x10
b1r
+00000009 F:00001DB4 ptr “YWipeghjpegimaim+OxlC 1.240us
: pl1_setup(nCoreFrequencyMhz);
i flash_biu_setup(nCoreFrequencyMhz); -
Fl 1 F
. All group members are marked with the color assigned to the group in all trace analysis windows.
= | B:Trace STATistic. TREE ol @ ==
(& setup... || iii Groups... || 28 Config...| 3 Goto...][EDetailed]uEﬂNesting] HChart |
range [tree total min max avr i
(root) [= (root) 7.792s - 7.792s 7.7925 .
main 1 main 7.792s - 7.792s 7.792s
enable_cache enable_cache 11.720us | 11.720us | 11.720us | 11.720us
JPEG_DecompressAllocate - IPEG_DecompressAllocate 180.360us | 180.360us | 180.360us | 180. 360us
jpeg_t3Z2_error jpeg_t3Z2_error 6.420us 6.420us 6.420us 6.420us
jpeg_CreateDecompress = jpeg_CreateDecompress 168.880us | 168.880us | 168.880us | 168. 880us ~
Fl m 3
J Additional group-based trace analyses commands are provided.
#| B:Trace.Chart.GROUP = &=
(& setup... || iiiGroups... |[38 Config...|[¥ Goto... || FiFind... || 4»1n |[p4Out|[MMFull]
40ms 915.160ms 915.180ms 915.200ms 915.220ms 915.240ms 915.260)
address ¥
other) Wy]]]] I Il E I S D N
"IPEG" | 4M . . . a1 | |) | | | . 1l
"INPUT"| & . . : . . u L . %
4 (| » 4 3

Trace.STATistic. GROUP Group-based run-time analysis.

Trace.Chart. GROUP Group time chart.
Trace.PROfileChart. GROUP Group profile chart.
MIPS.STATistic. GROUP MIPS statistic for groups.

MIPS.PROfileChart. GROUP MIPS profile chart for groups.

©1989-2023 Lauterbach

General Commands Reference Guide G

29

Merge

If a group is enabled, the following features are added by checking merge:

111 B=GROUP List

=N Hoh/)

[3K Reset |[O Disable Al @ Enable All|[O Hide All || @ Show Al 52 Store... || £ Load... |[iii Create...][jiicaerac. |
group enable |hide |merge |color i
= TINPUT" " AQUA -

YJdinput W AQUA

= ”JPEG” V ¥ INAVY

| Elpeﬁ W W [NAVY
"ot W -

members are displayed.

The group represents its members in all trace analysis windows. No details about group

TlesrO_write
_1lesr0_wait
Tlesrl_write
_llecsrl_wait

£ | B:Trace.STATistic.Func EI@
(& setup.... || fii Groups... || 52 Config...| Y Goto... || =|Detailed | fE|Nesting || =chart |
funcs: 82. total: 7.792s
range [total min max avr count intern¥% '
(root) 792s - 7.792s 7.792s - -
"IPEG"] 7.792s 1.480us 7.792s 6.416ms 1217.(0/1) 0. 5?6%| """ I
jpeg CreateDecompress 168.880us | 168.880us | 168. 880us | 168. 880us 1. <0.001% —
init_memory_mgr 57.980us 57.980us 57.980us 57.980us 1. <0.001%
]'lmt marker_reader 55.140us 55.140us 55.140us 55.140us 1. <0.001%
g alloc_small 6.3%ms 4.300us | 58.840us 7.152us 894. 0.073%
reset_marker_reader | 136.600us 5.040us 5.060us 5.05%us 27. 0.001%
jinit_input_controller| 13.700us | 13.700us | 13.700us | 13.700us 1. =0. 001%
]peg abort_decompress 351.940us | 13.200us | 20.860us | 13.536us 26. 0.001%
jpeg_abort 2.768ms | 10.220us | 102. 540us 54.278us 51. 0.003%
free_pool 2.511ms 6.040us | 96.620us | 49.234us 51. 0.007% ~
B —— | | ¢
MB::Trace.Chart.stbol | =] || =] || 2 |
(& setup.... || iiiGroups... || 82 Config...| 13 Goto... || #Find... || 4»In |[p4out|[MMFull|
5.000us 10.000us 15.000us 20.000us
address 4 ! ! ! I I
[JTnit_Tnput_controlTer[& | "
(other) © = |
"JpEG W]
A

< |i7' o« |'_' g

©1989-2023 Lauterbach

General Commands Reference Guide G | 30

Hide

If a group is enabled, the following features are added by checking hide:

17 B:GROUP.List ===
[3K Reset |[O Disable Al @ Enable All|[O Hide All || @ Show Al 52 Store... || £ Load... |[iii Create...][jiicaerac. |
group enable |hide |merge |color
= TINPUT" " AQUA
YJdinput W AQUA
= "IPEG" V V NAVY
| \ﬂ'lpeg W W NAVY
"other W
. The trace information recorded for the group members is hidden.
i) BuTrace.List EI@
(& setup... [3 Goto... || F3Find... || fwichart || EProfile || BIMPS || % More || Xless |
record |run |address cycle |data symbaol ti.back
mr ri,ril -
Twz r29,0x14(r1) £
mtTr r0
Twz r30,0x18(r1) A
Twz r31,0x1C(r1) -
addi rl,rl,0x20
r
+0000004 3 F:00001154 ptrace “Wipeghjpeg'jpeg_get_small+0x1C 3.200us
group "JPEG"
group "other" 0.860us —
L omr r3o,r3
1061 if (mem == NULL) {
cmpwi r30,0x0
bne 0x7 604
0K, fi11 in the method pointers */ -
J 4 I3
. The group represents its members in all trace analysis windows. No details about group

members are displayed (same as merge).

. Step over group members during HLL single stepping.

©1989-2023 Lauterbach

General Commands Reference Guide G

31

GROUP.COLOR

Define color for group indicator

Format:

<color>:

GROUP.COLOR <group_name> <color>

NONE
BLACK
MAROON
GREEN
OLIVE
NAVY
PURPLE
TEAL
SILVER
GREY
RED
LIME
YELLOW
BLUE
FUCHSIA
AQUA
WHITE

Defines the color that is used to mark the group members.

The following color convention are used:

RED To mark the OS kernel.
YELLOW To mark kernel drivers and libraries.
BLUE To mark virtual machine byte code e.g. Android/Dalvik.
GREEN To mark the application/application processes.
Example:
GROUP.COLOR "Layer 1" FUCHSIA ; Specify color
See also

B GROUPCreate

B GROUP

A ’PowerView - Screen Display’ in 'PowerView User’s Guide’

©1989-2023 Lauterbach

General Commands Reference Guide G

32

GROUP.Create Create a new group

Format: GROUP.Create [<group_name> {<group_member>}] [[<option>]
<group._ <address_range> | <function>| <module> | <program> | <source>
member>:
<option>: ENable | DISable

SHOW | HIDE

SEParate | Merge

<color>

The command GROUP.Create allows to create a new group. Group members can be defined by module
name, function name, etc. Without options, the GROUP.Create dialog window is opened.

ENable Enable the GROUP features.

(default)

DISable Disable the GROUP features.

SHOW Display the instructions of the GROUP members together with the
(default) GROUP indicator (COLOR).

HIDE Suppress the display of the instructions of the GROUP members in the

trace listing and step over the instructions of the GROUP members
during HLL single stepping. The group represents its members in all trace
analysis windows.

SEParate Display the measurement results separately for each group member if a
(default) trace analysis command is used.
Merge The group represents its members in all trace analysis windows. No details

about group members are displayed.

DIALOG Deprecated.
<color> Define the color for the GROUP indicator.
Examples:
GROUP.Create ; open GROUP.Create dialog window

©1989-2023 Lauterbach General Commands Reference Guide G | 33

GROUP.Create "kernel" \os_modulel \os_module2 \os_scheduler
GROUP.Create "Layer 1" 0x3F0000--0x3FA533 /LIME

GROUP.Create "INT" sYmbol.SECPRANGE (\.interrupt) /MAROON /HIDE

See also

B GROUP.COLOR B GROUP.CreateFunctions B GROUP.CreateLabels B GROUP.CreateModules
B GROUP.CreatePrograms B GROUP.CreateSources B GROUPCreateTASK B GROUP

B GROUPDelete B GROUPDeleteTASK B GROUPDISable B GROUPENable

B GROUPHIDE B GROUPList B GROUPMerge B GROUP.RESet

B GROUP.SEParate B GROUP.SHOW B <trace>.Chart. GROUP B <trace>.STATistic. GROUP

A ’Release Information’ in’Legacy Release History’

GROUP.CreateFunctions Pool functions to group

Format: GROUP.CreateFunctions <group_name> <pattern>|<function> [{/<option>}]

<option>: ENable | DISable
SHOW | HIDE
SEParate | Merge
DIALOG
<color>

Pools the functions to groups.

<option> For a description of the options, refer to the GROUP.Create command.

Example:

; display symbol listing for all functions
sYmbol .List.Function

; pool all functions that match the specified name pattern to the
; group "group_ A"

; assign color FUCHSIA to "group_ A"

GROUP.CreateFunctions "group_A" jpeg_f* /FUCHSIA

; create group "group_B" that contains the function init_source
GROUP.CreateFunctions "group_B" init_source

©1989-2023 Lauterbach General Commands Reference Guide G | 34

; add function term_source to the group "group_ B"
"group_B" term_source

GROUP.CreateFunctions

; add function do_barray io to the group "group_B"
"group_B"
"group_B" do_barray_io /TEAL

; assign color TEAL to
GROUP.CreateFunctions

; list group definition

GROUP.List

111 Bu:Group.List

Lol el

[& Reset |[O Disabke Al || @ Enable Al O Hide All || @ Show All| 52 Store... || S Load...

iil Create...) | il GateTak. |

enable hide

merge |color

group
= "group_A" 1 FUCHSIA
jpeg_free_small I FUCHSIA
jpeg_free_large W FUCHSIA
jpeg_finish_decompress W FUCHSIA
jpeg_fill_bit_buffer I FUCHSIA
Jjpeg_finish_output W FUCHSIA
= "group_B" W TEAL
init_source W TEAL
term_source 3 TEAL
do_barray_io W TEAL
"other" W -
See also
B GROUPCreate B GROUP
GROUP.CreatelLabels Use labels to pool address ranges to group
Format: GROUP.CreateLabels <group_name> <pattern> | <label> [{/<option>}]
<option>: ENable | DISable

DIALOG
<color>

SHOW | HIDE
SEParate | Merge

Pools address ranges to groups. Each address range starts at a label and ends at the next label.

<option>

For a description of the options, refer to the GROUP.Create command.

©1989-2023 Lauterbach

General Commands Reference Guide G | 35

Example:

; pool all address ranges that start with a label of the specified name

; pattern to the group "Init"
GROUP.CreateLabels "Init" _*init*

add address range that starts with label _start to the group "Init"
; assign color MAROON to the group "Init"
GROUP.CreateLabels "Init" _start /MAROON

I

; list group definition
GROUP.List

17 B:GROUP List = <
[3 Reset |[O Disable Al @ Enable All|[O Hide All || @ Show Al 52 Store... || £ Load... |[iii Create...| jfiaera |
group enable |hide |merge |color i
ERET R " MAROON -
(_start)-—-({_start+0x7F) W MAROON
(_init_int_vectors)—-{_init_int_vectors+0xE7) W MAROON
(_mmu_init)--(_mmu_init+0x57) W MAROON
(_init_LZRAM) --(_init_L2RAM+0x0F) " MAROON
("Global'_init)--("\Global'_init+0x2BE) W MAROON
(__init)——-({_init+0x2B) W MAROON
"other" W
4 I3

See also
B GROUPCreate B GROUP

©1989-2023 Lauterbach General Commands Reference Guide G | 36

GROUP.CreateModules Pool modules to group

Format: GROUP.CreateModules <group_name> <pattern | module> [{/<option>}]
<option>: ENable | DISable

SHOW | HIDE

SEParate | Merge

<color>

Pools modules to group.

<option> For a description of the options, refer to the GROUP.Create command.

Example:

; display sYmbol listing for all functions
sYmbol .List.Module

; pool all modules that match the specified name pattern to the
; group "jd_group"
GROUP.CreateModules "jd_group" jd*

; add modules jmemmgr to group "jd_group"
; assign color FUCHSIA to group "jd_group"
GROUP.CreateModules "jd_group" jmemmgr /FUCHSIA

; list group definition
GROUP.List

"

17 B:GROUP.List = &=
[3 Reset |[O Dissble Al || @ Enable All|[O Hide All|[@ Show All[52 store... || 5 Load... |[ifi Create...|| i teteTac. |
group enable |hide |merge |color
= "Jd_group” W FUCHSIA
“Jdapimin W FUCHSIA
 Jmemmgr W FUCHSIA
Jdmerge W FUCHSIA
YJdcolor W FUCHSIA
YJdsample W FUCHSIA
Jddctmgr W FUCHSIA
YJdpostct W FUCHSIA
Y Jdcoefct W FUCHSIA
YJdmainct W FUCHSIA
\Jdphuff V FUCHSIA
\Jdhuff V FUCHSIA
Y Jdmarker W FUCHSIA
\Jdinput V FUCHSIA
Y Jdmaster W FUCHSIA
YJdtrans W FUCHSIA
A daP‘i std " FUCHSIA
"other" I
J A [
See also
B GROUPCreate B GROUP

©1989-2023 Lauterbach General Commands Reference Guide G | 37

GROUP.CreatePrograms Pool programs group

Format: GROUP.CreatePrograms <group_name> <pattern>|<program> [{/<option>}]
<option>: ENable | DISable

SHOW | HIDE

SEParate | Merge

<color>

Pools the programs that correspond to the specified name pattern to a new group.
<option> For a description of the options, refer to the GROUP.Create command.

Example:

; display symbol listing for all programs
sYmbol .List.Program

; pool all programs that match the specified name pattern to the
; group "my_ programs"
GROUP.CreatePrograms "my_programs" Jj*

add program im02_bflx to group "my_ programs"
; assign color OLIVE to group "my_programs"
GROUP.CreatePrograms "my_programs" im02_bflx /OLIVE

I

; list group definition
GROUP.List

1ii B:GROUP List EI@

[& Reset |[O Disable Al @ Enable All][O Hide All | @ Show All 52 store... || S Load... |[ifi Create..|| i |
group enable |hide |merge |color i
= Tmy_programs" W OLIVE "
F:00000000--00017637 OLIVE
V:40000000--400055F3 OLIVE
"other"

e

See also
B GROUPCreate B GROUP

©1989-2023 Lauterbach General Commands Reference Guide G | 38

GROUP.CreateSources Pool source files to group

Format: GROUP.CreateSources <group_name> <pattern>|<source> [{[<option>}]
<option>: ENable | DISable

SHOW | HIDE

SEParate | Merge

<color>

Pools the source files that correspond to the specified name pattern to a new group.

<option> For a description of the options, refer to the GROUP.Create command.

Example:

; display symbol listing for all sources
sYmbol .List.SOURCE

; pool all sources that match the specified name pattern to the
; group "my sources"
GROUP.CreateSources "my_sources" *\mpchxxx\mpc5646c_jpeg\jg*.c

add all sources that match the specified name pattern to the group
"my_ sources"

; assign color LIME to group "my_sources"

GROUP.CreateSources "my_sources" *\mpcbhbxxx\mpc5646c_jpeg\ji*.c /LIME

I

; list group definition
GROUP.List

17 B:GROUP List ===
[MK Reset][O Disable AII][Q Enable AII][O Hide All][Q Show AII][EStore...][=2 Load...][iﬁCreate...][il CrfeTak.]
group enable |hide |merge |color i
E "my_sources" W LIME -
\jquant2 W LIME
“Jjquantl W LIME
“Jidctred W LIME
"other" W
See also
B GROUPCreate W GROUP

©1989-2023 Lauterbach General Commands Reference Guide G | 39

GROUP.CreateTASK

Pool tasks to group

Format:

<task>:

<option>:

GROUP.CreateTASK <group_name> {<task>} [{/<option>}]

<task_magic> | <task_id> | "<task_name>"

ENable | DISable
SEParate | Merge
<color>

Pools tasks to a group. The grouping of tasks affects only the following commands:

Trace.Chart.TASK

Trace.STATistic.TASK Display task activity statistic.

Display a task activity chart.

Trace.STATistic. TASKState Display task state statistic.
Trace.Chart. TASKState Display task state time chart.
Trace.PROfileChart. TASK Display a task activity graph.
MIPS.STATistic.TASK Display the MIPS per task numerically.
MIPS.PROfileChart.TASK Display the MIPS per task graphically.

<option>

For a description of the options, refer to the GROUP.Create command.

<task_magic>, etc.

See also “What to know about the Task Parameters”
(general_ref_t.pdf).

<task_name>

This command supports task name with wildcard. If using wildcard in
task_name, it will search the corresponding tasks and list them to the

group.

©1989-2023 Lauterbach

General Commands Reference Guide G

40

Example for Linux:

-

o [=|[=]==]
magic name Al1d space traceid core |sel stop |
FFFFB00012B05EB0 [kworker /7 :0:46 46. [(kernel) 000000000000002E * A
FFFF800012B06C00 |kworker /7 :0H:47 47. |(kernel) 000o00000000002F *
FFFF80001218DEBOD |kworker /7:1:78 78. |(kernel) 000000000000004E *
FFFF800011975100 |kworker /7 :1H:1774 1774. |(kernel) 000o0000000006EE *
FFFF8000129CE600 |kworker /ul6:0:5 5. |(kernel) 00o0000000000005 *
FFFF8000120E8D80 |kworker /ulG:] 50. |(kernel) 000o000000000032 *
FFFF80001218C380 |kworker /ul 59. ((kernel) 00oo000000000036 *
FFFF800012208000 |kworker /ul 3 63. |(kernel) 000o00000000003F *
FFFF800012208D80 |kworker /ul6:4:70 70. |(kernel) 0000000000000046 *
FFFF800011CEC380 |kworker /ul6:5:435 435, [(kernel) 00oo0000000001E63 *
FFFF8000110A3600 |Togin:1806 1806. |Togin 00oo00000000070E *
FFFF8000110C9B00 machine_state_m:] 1845. machine_state_m |0000000000000735 .
FFFF800011E20000 machine_state_s 2026. machine_state_m [00000000000007EA .
FFFF800011E20D80 machine_state_m:2027 2027. \machine_state_m |00000000000007ER .
FFFFS00012A10D80 migration/0:11 11. ((kernel) 00ooo00000000006 *
FFFF800012A41B00 |migration/1:14 14. ((kernel) 00ooo0000000000E *
FFFFS00012A45E80 |migration/2:19 19. ((kernel) 0ooo000000000013 *
FFFFS00012A7ABB0 migration/3:24 24, ((kernel) 00ooo00000000018 *
FFFF800012A7ECO0 migration/4:29 29. ((kernel) 0000000000000010 *
FFFF800012ACEG00 migration/5:34 34. ((kernel) 000o000000000022 *
FFFFS00012B00000 migration/6:39 39. ((kernel) 0000000000000027 *
FFFFS00012B04380 |migration,/7:44 44, |(kernel) 000000000000002C *
FFFFB000129CC380 mm_percpu_wg:6 6. |(kernel) 0000000000000006 *
FFFF800011D92880 |mmcqd,/0:1744 1744. |(kernel) 0000000000000600 *
FFFF800011D95E80 |mmcqd,/Oboot0:1745 1745. |(kernel) 00oo000000000601 *
FFFF5000110A0000 |mmcqd/Obootl:1746 1746. |(kernel) 000o000000000602 *
FFFF80001183E600 |mmcqd,/1:1768 1768. |(kernel) 00oo0000000006ES *
0000000000000838 |modprobe: 2104 2104. |modprobe *
FFFFB000120E8000 |netns 49 49, |(kernel) 0000000000000031 *
FFFF800011935100 |nfsiod:911 911. |(kernel) 0ooo00000000038F * hd

; display task list
TASK.List

; pool specified tasks to group

; use <task_name> to specify tasks

; assign color LIME to group
GROUP.CreateTASK "migration0-2"

; pool specified tasks to group

; use <task name> to specify tasks

; assign color BLUE to group
GROUP.CreateTASK "mmcgd"

'IIrujlc:gI(i.* n

"mmcgd"
/BLUE

"migrationO0-2"
"migration/0:11"

"mmcgd"

"migrationO0-2"

; pool specified tasks to group "migration0-2"
; use <task_magic> to specify tasks
; assign color LIME to group "migration0-2"

GROUP.CreateTASK "migration0-2"

; pool specified tasks to group

; use <task_id> to specify tasks

; assign color LIME to group

"migrationQ0-2"

"migrationQ0-2"

"migration/1:14"
"migration/2:19"

\
/LIME

OxFFFF800012A10D80 OxFFFF800012A41B00 \
OxFFFF800012A45E80 /LIME

GROUP.CreateTASK "migration0-2" 11. 14. 19. /LIME
; list group definition
GROUP.List
©1989-2023 Lauterbach General Commands Reference Guide G | 41

-

iif B:GROUP List

(= ==]

2 Reset || O Disable All| @ Enable Al O Hide Al @ Show Al |52 Store...|| 52 Load... | §if Ceste.. | fi Ceste Tk
group enable lhide |merge |color |
other™ I jmer
= "migration0-2" W LIME
"(kernel)::migration/2:19" W LIME
"(kernel)::migration/1:14" W LIME
"(kernel)::migration/0:11" W LIME
= "mmcqd™ W BLUE
"{kernel) : :mmcqd/1:1768" W BLUE
"(kernel) : :mmcqd,/0:1744" W BLUE
"{kernel) : :mmcqd,/0Obootl:1746" W BLUE
"(kernel) : :mmcqd/0Oboot0:1745" W BLUE
=

See also

B GROUPCreate B GROUP

B GROUPDeleteTASK

©1989-2023 Lauterbach

General Commands Reference Guide G

42

GROUP.Delete Delete the specified group

Format: GROUP.Delete [<group_name> | <range> | <address>]

Deletes the specified GROUP. If no group is specified, then all GROUPs are deleted.

Example:
GROUP.Delete "kernel" ; delete the "kernel" group
GROUP.Delete 0x3F0000--0x3FA533 ; delete group in the address range
See also
B GROUP B GROUPCreate
GROUP.DeleteTASK Delete specified task from group
Format: GROUP.DeleteTASK [<task_magic> | <task_id> | "<task_name>"]

Deletes the specified task from a group of tasks based on the task’s magic number, ID, or name. If no group
is specified, then all GROUPs are deleted.

<task_magic>, etc. See also “What to know about the Task Parameters”
(general_ref_t.pdf).

Example:
TASK.List.tasks ;1ist all task names including their magic numbers
;and IDs
GROUP.List ;display an overview of all groups

;create a task group named 'myTaskGroup' and add three tasks to it
GROUP.CreateTASK "myTaskGroup" "adbd:1545" "adbd:1546" "adbd:1547"

;for demo purposes, let's delete two tasks based on magic number and ID
GROUP.DeleteTASK OxXEFF7B040 ;magic number of task
GROUP.DeleteTASK 1546. ;ID of task

©1989-2023 Lauterbach General Commands Reference Guide G | 43

(o8 BuTASK List.tasks

[E=N Nl

space

traceid

magic name 1d
EFF7E040 [EL[EEELE]

EFC54C40 (adbd:1546

EFCES080 |adbd:1547

4

1545.
1546.
1547.

1544,
1544,
1544,

I

Ox0608 |0000017C
Ox0608 |0000017C
0x0608 |0000017C

-

3

i1l B:GROUP List

[3% Reset [O Diabie All[@ Ensbe Al (O Hide All[@ Show Al (52 Store...|

enable |hide

merge |[color

4

group
| "other™

E = "myTaskGroup”
J "adbd:1547"

W
W

A The magic numbers, names and IDs of the tasks are displayed in the TASK.List.tasks window.

B Result: Two of the three tasks have been deleted from the group named ‘myTaskGroup’.

See also
B GROUP B GROUPCreate B GROUPCreateTASK
GROUP.DISable Disable a group
Format: GROUP.DISable [<group_name> | <range> | <address>]

Disables a group.

GROUP.DISable

GROUP.DISable 0x3F0000--0x3FA533

See also

"kernel™"

B GROUP

B GROUPCreate

©1989-2023 Lauterbach

General Commands Reference Guide G

| 44

GROUP.ENable

Enable a group

Format: GROUP.ENable [<group_name> | <range> | <address>]

Enables a group. For details, refer to Features.
Examples:

GROUP.ENable "kernel"

GROUP.ENable 0x3F0000--0x3FA533

See also
B GROUP B GROUPCreate
GROUP.HIDE Hide group from debugging
Format: GROUP.HIDE [<group_name> | <range> | <address>]

Hides a group. For details, refer to Features.
Example:

GROUP.HIDE "kernel"
Trace.List

GROUP.SHOW "kernel"

See also

B GROUP B GROUPCreate
A ’'Release Information’ in’Legacy Release History’

©1989-2023 Lauterbach

General Commands Reference Guide G

45

GROUP.List List all specified groups

Format: GROUP.List

Displays all group definitions.

See also
B GROUP B GROUPCreate
GROUP.Merge Merge group members in statistic
Format: GROUP.Merge <name>

Merges group members in all trace analysis windows. For details, refer to Features.
Example:

GROUP.Merge "layer 1"
Trace.STATistic.Func

GROUP. SEParate "layer 1"

See also
B GROUP B GROUPCreate

©1989-2023 Lauterbach General Commands Reference Guide G | 46

GROUP.RESet Clear all group specifications

Format: GROUP.RESet

Resets all group settings to default.
Example:

GROUP.RESet

See also
H GROUP B GROUPCreate
GROUP.SEParate Separate group members in statistic
Format: GROUP.SEParate <name>

Displays details about group members in all trace analysis windows (default). For details, refer to Features.
Example:

GROUP.SEParate "layer 1"
Trace.STATistic.Func

GROUP.Merge "layer 1"

See also
B GROUP B GROUPCreate

©1989-2023 Lauterbach General Commands Reference Guide G | 47

GROUP.SHOW Show group for debugging

Format: GROUP.SHOW [<group_name> | <range> | <address>]

Shows a group. For details, refer to Features.
Example:

GROUP.SHOW "kernel"
Trace.List

GROUP.HIDE "kernel"

See also
B GROUP B GROUPCreate

©1989-2023 Lauterbach General Commands Reference Guide G | 48

	General Commands Reference Guide G
	History
	GLOBALON
	GLOBALON Global event-controlled PRACTICE script execution

	Go
	Go Debug control, program execution, and real-time emulation
	Debug Control for Debuggers
	Go.Asm Start the program execution and switch to Asm mode
	Go.Back Go back in program (CTS)
	Go.BackEntry Go back in program to function entry (CTS)
	Go.BackTillWarning Go back in program until warning (CTS)
	Go.Change Run program till content changes
	Go.direct Start the program execution
	Go.Hll Start the program execution and switch to HLL mode
	Go.Java Run program until JAVA code starts
	Go.Mix Start the program execution and switch to "Mix" mode
	Go.MONitor Switch to run mode debugging
	Go.Next Start program and stop at next line
	Go.Return Complete HLL function
	Go.Till Run program till expression becomes true
	Go.TillWarning Re-run program until warning (CTS)
	Go.Up Go up in function nesting

	GROUP
	GROUP Group functions, modules, or tasks
	Features
	GROUP.COLOR Define color for group indicator
	GROUP.Create Create a new group
	GROUP.CreateFunctions Pool functions to group
	GROUP.CreateLabels Use labels to pool address ranges to group
	GROUP.CreateModules Pool modules to group
	GROUP.CreatePrograms Pool programs group
	GROUP.CreateSources Pool source files to group
	GROUP.CreateTASK Pool tasks to group
	GROUP.Delete Delete the specified group
	GROUP.DeleteTASK Delete specified task from group
	GROUP.DISable Disable a group
	GROUP.ENable Enable a group
	GROUP.HIDE Hide group from debugging
	GROUP.List List all specified groups
	GROUP.Merge Merge group members in statistic
	GROUP.RESet Clear all group specifications
	GROUP.SEParate Separate group members in statistic
	GROUP.SHOW Show group for debugging

